This page is intentionally left blank.
This Atlas is part of Volume 10 of the *Statewide Regional Evacuation Study Program* (SRESP), and one of three sets of county books in the *North Central Florida Storm Tide Directional Atlas* series. Book 1 covers Dixie County; Book 2 covers Taylor County; and Books 3 and 4 cover the two inland Counties which receive storm surge: Gilchrist and Lafayette. In each county, the primary volume presents an overview of the study and the methodology, while the Appendices, numbered from A to C, include the surge inundation maps for each of three directional storm clusters: N-ENE, SW-WNW, and WNW-N. The Atlas maps identify those areas subject to potential storm tide flooding from the five categories of hurricane on the Saffir-Simpson Hurricane Wind Scale, as determined by the National Oceanic and Atmospheric Administration (NOAA) numerical storm surge model, Sea, Lake and Overland Surges from Hurricanes (SLOSH). Volume 10 is unique in that it is based on the direction the storm is heading and depicts the resulting surge of storms approaching from that specific directional angle.

The *Storm Tide Directional Atlas* series supplements the original hazards analysis for storm tides (Volume 7-3) and depth (Volume 9-3), and enhances a key component of the SRESP. The *Technical Data Report* (Volume 1-3) was built upon the original storm tide analysis and includes the evacuation zones and population estimates, results of the evacuation behavioral data, shelter analysis and evacuation transportation analysis. The study, which provides vital information to state and local emergency management, forms the basis for county evacuation plans. The final study documents are available on the Internet at:

http://www.ncfrpc.org/sres/directional/index.html

This Atlas series was produced by the North Central Florida Regional Planning Council with funding from the Federal Emergency Management Agency, through the Florida Division of Emergency Management.

North Central Florida Regional Planning Council
2009 NW 67th Place, Gainesville, FL 32653
Telephone: 352.955.2200, Fax: 352.955.2209
Email: mundy@ncfrpc.org, Website: http://www.ncfrpc.org
CREDITS AND ACKNOWLEDGEMENTS

Funding was provided by the Florida Legislature with funds from the Federal Emergency Management Agency (FEMA), through the Florida Division of Emergency Management (FDEM), 2555 Shumard Oak Boulevard, Tallahassee, 32399, www.floridadisaster.org.

The Council acknowledges and extends its appreciation to the following agencies and people for their cooperation and assistance in the development of this Atlas:

National Oceanic and Atmospheric Administration (NOAA/TPC-NHC) for the SLOSH numerical storm surge model developed by the late Chester L. Jelesnianski, the development of the 2009 Cedar Key and Florida Bay Basins under the management of Jamie Rhome, and for the storm tide computation and interpretation provided by the NOAA Storm Surge Modeling team.

Florida Division of Emergency Management
Bryan Koon, Director
Andrew Sussman, Hurricane Program Manager
Richard Butgereit, GIS Manager

Northeast Florida Regional Council
Elizabeth Payne, Project Manager

Florida Emergency Preparedness Association
For their support in this statewide effort

County Emergency Management Agencies
Scott Garner, Division Chief, Dixie County Emergency Management
David Peaton, Director of Gilchrist County Emergency Management
Marc Land, Director of Lafayette County Emergency Management
Steve Spradley, Director of Taylor County Emergency Management
A. Storm Tide Directional Atlas

The surge inundation limits (directional maximum surge heights minus the ground elevations) are provided as GIS shape files and graphically displayed on maps in the Directional Storm Tide Atlas for the South Florida Region. The Atlas was prepared by the South Florida Regional Council under contract to the State of Florida, Division of Emergency Management, as part of this study effort. The maps prepared for the Atlas consist of base maps (1:24000) including topographic, hydrographic and highway files updated using current county and state highway data. Detailed shoreline and storm tide limits for each category of storm were determined using the region’s geographic information system (GIS).

The purpose of the maps contained in this Atlas is to reflect a worst probable scenario of the hurricane storm tide inundation for a given cluster of compass directions that a storm would be heading and to provide a basis for the hurricane evacuation zones and study analyses. While the storm tide delineations include the addition of an astronomical mean high tide and tidal anomaly, it should be noted that the data reflects only still-water saltwater flooding. Local processes such as waves, rainfall and freshwater flooding from overflowing rivers, are usually included in observations of storm tide height, but are not surge and are not calculated by the SLOSH model. It is incumbent upon local emergency management officials and planners to estimate the degree and extent of freshwater flooding as well as to determine the magnitude of the waves that will accompany the surge.

Although the methodology used for surge determination in this Atlas does the most to reduce inconsistencies and human subjectivity, factors remain in the data itself that could show variations from previous efforts and results. Whenever a SLOSH basin is changed in any way, results can vary. Using MEOW (Maximum Envelope of Water) data as we do in this directional atlas, instead of the MOM (Maximum of Maximums) data, and choosing directional subsets of the maximums (MOMs) will indeed produce different results than other atlases – and this was expected. Other factors can include different elevation model data, as well as number and scope of selected SLOSH basin grid cells. Also, any data that is beyond the original extent or boundary of the basin is interpolation influenced by the modeling trend up to that location, and hand adaptation of basin extensions.

Figure 1 shows the projected surge inundation for each category of storm for storms moving in an WNW-W direction. Figure 2 provides an index of the WNW-W directional map series for Dixie County.

B. Points of Reference

County emergency management agencies selected reference points, which include key facilities or locations critical for emergency operations. The Table 1 includes the map identification number, descriptions of the selected points, and the elevation of the site. The elevation is based on the digital elevation data provided by LiDAR. It should be noted that if the site is large, elevations may vary significantly. Table 1 also provides the storm tide value from the SLOSH value and the depth of inundation above ground (storm tide height minus the ground elevation) at the site.
Figure 1 Directional WNW-W (Paralleling) Storm Surge
Table 1 Points of Reference, Surge Height and Inundation Depth Above Ground

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Name</th>
<th>Elevation</th>
<th>C1 Depth</th>
<th>C2 Depth</th>
<th>C3 Depth</th>
<th>C4 Depth</th>
<th>C5 Depth</th>
<th>C1 Surge</th>
<th>C2 Surge</th>
<th>C3 Surge</th>
<th>C4 Surge</th>
<th>C5 Surge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dixie</td>
<td>24.2</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.6</td>
<td>4.2</td>
<td>6.4</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>Dixie</td>
<td>25.6</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>3</td>
<td>Dixie</td>
<td>8.0</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>0.4</td>
<td>2.7</td>
<td>4.4</td>
<td>6.8</td>
<td>7.9</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>Dixie</td>
<td>9.8</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>5.1</td>
<td>6.2</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>Dixie</td>
<td>3.4</td>
<td>Dry</td>
<td>0.6</td>
<td>3.4</td>
<td>4.5</td>
<td>4.9</td>
<td>2.2</td>
<td>4.0</td>
<td>6.8</td>
<td>7.9</td>
<td>8.3</td>
</tr>
<tr>
<td>6</td>
<td>Dixie</td>
<td>17.7</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>7</td>
<td>Dixie</td>
<td>14.9</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>8</td>
<td>Dixie</td>
<td>15.0</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>9</td>
<td>Dixie</td>
<td>18.8</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>10</td>
<td>Dixie</td>
<td>5.1</td>
<td>Dry</td>
<td>2.0</td>
<td>3.3</td>
<td>3.8</td>
<td>3.0</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>11</td>
<td>Dixie</td>
<td>9.8</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>5.7</td>
<td>7.4</td>
<td>7.9</td>
</tr>
<tr>
<td>12</td>
<td>Dixie</td>
<td>4.7</td>
<td>Dry</td>
<td>1.7</td>
<td>3.1</td>
<td>3.7</td>
<td>2.2</td>
<td>3.2</td>
<td>6.4</td>
<td>7.8</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dixie</td>
<td>4.4</td>
<td>Dry</td>
<td>0.1</td>
<td>2.2</td>
<td>3.3</td>
<td>3.9</td>
<td>2.8</td>
<td>4.5</td>
<td>6.6</td>
<td>7.7</td>
<td>8.3</td>
</tr>
<tr>
<td>14</td>
<td>Dixie</td>
<td>5.1</td>
<td>Dry</td>
<td>1.4</td>
<td>2.9</td>
<td>3.3</td>
<td>2.2</td>
<td>3.7</td>
<td>6.5</td>
<td>8.0</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dixie</td>
<td>22.2</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>16</td>
<td>Dixie</td>
<td>13.4</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.3</td>
<td>5.9</td>
<td>7.2</td>
<td>7.7</td>
</tr>
<tr>
<td>17</td>
<td>Dixie</td>
<td>17.7</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.4</td>
<td>3.2</td>
<td>4.8</td>
<td>5.6</td>
<td>5.9</td>
</tr>
<tr>
<td>18</td>
<td>Dixie</td>
<td>30.3</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.2</td>
<td>3.2</td>
<td>4.9</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>19</td>
<td>Dixie</td>
<td>5.8</td>
<td>Dry</td>
<td>0.9</td>
<td>1.9</td>
<td>2.4</td>
<td>2.9</td>
<td>4.6</td>
<td>6.7</td>
<td>7.7</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Dixie</td>
<td>5.4</td>
<td>Dry</td>
<td>1.3</td>
<td>2.3</td>
<td>2.8</td>
<td>2.9</td>
<td>4.6</td>
<td>6.7</td>
<td>7.7</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Dixie</td>
<td>5.6</td>
<td>Dry</td>
<td>1.1</td>
<td>2.2</td>
<td>2.7</td>
<td>2.9</td>
<td>4.6</td>
<td>6.7</td>
<td>7.8</td>
<td>8.3</td>
<td></td>
</tr>
</tbody>
</table>

1 Depth refers to the depth of inundation at the site (storm surge value minus the ground elevation)
2 Surge refers to the storm surge value from the SLOSH Model
<table>
<thead>
<tr>
<th>Map ID</th>
<th>Name</th>
<th>Elevation</th>
<th>C1 Depth</th>
<th>C2 Depth</th>
<th>C3 Depth</th>
<th>C4 Depth</th>
<th>C5 Depth</th>
<th>C1 Surge</th>
<th>C2 Surge</th>
<th>C3 Surge</th>
<th>C4 Surge</th>
<th>C5 Surge</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Dixie</td>
<td>8.1</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>0.2</td>
<td>0.6</td>
<td>2.7</td>
<td>4.0</td>
<td>7.2</td>
<td>8.3</td>
<td>8.7</td>
</tr>
<tr>
<td>23</td>
<td>Dixie</td>
<td>6.7</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>1.0</td>
<td>1.6</td>
<td>2.9</td>
<td>4.5</td>
<td>6.7</td>
<td>7.7</td>
<td>8.3</td>
</tr>
<tr>
<td>24</td>
<td>Dixie</td>
<td>4.0</td>
<td>Dry</td>
<td>0.4</td>
<td>2.6</td>
<td>3.7</td>
<td>4.3</td>
<td>2.8</td>
<td>4.4</td>
<td>6.6</td>
<td>7.7</td>
<td>8.3</td>
</tr>
<tr>
<td>25</td>
<td>Dixie</td>
<td>5.5</td>
<td>Dry</td>
<td>Dry</td>
<td>1.0</td>
<td>2.2</td>
<td>2.8</td>
<td>3.0</td>
<td>4.4</td>
<td>6.5</td>
<td>7.7</td>
<td>8.3</td>
</tr>
<tr>
<td>26</td>
<td>Dixie</td>
<td>7.4</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>0.4</td>
<td>0.9</td>
<td>2.8</td>
<td>4.2</td>
<td>6.7</td>
<td>7.8</td>
<td>8.3</td>
</tr>
<tr>
<td>27</td>
<td>Dixie</td>
<td>11.3</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.5</td>
<td>3.6</td>
<td>6.4</td>
<td>7.7</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Dixie</td>
<td>18.4</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.5</td>
<td>3.4</td>
<td>4.8</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>29</td>
<td>Dixie</td>
<td>8.2</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.7</td>
<td>3.4</td>
<td>4.6</td>
<td>5.2</td>
<td>5.4</td>
</tr>
<tr>
<td>30</td>
<td>Dixie</td>
<td>10.2</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry</td>
<td>2.7</td>
<td>3.3</td>
<td>4.5</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>31</td>
<td>Dixie</td>
<td>5.5</td>
<td>Dry</td>
<td>1.5</td>
<td>2.8</td>
<td>3.3</td>
<td>2.9</td>
<td>4.7</td>
<td>7.0</td>
<td>8.3</td>
<td>8.8</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2 WNW-W (Paralleling) Atlas Map Index
Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm tide height above NAVD88 at high tide with no storm surge.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital elevations.

Datum = NAD 1983, 1,000-m USNG

Legend:
- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Scale: 1:24,000

WNW-W (Paralleling)

Map Plate 1
Page 1 of 94
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on the water level plus 1 foot above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from the Maximum of Maximums surge height over LIDAR based digital elevation.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm tide height with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from LIDAR based digital elevation.
ATLAS LEGEND

Evacuation Routes
City Limits
NHD Lakes
Point of Reference

Storm Tide Category
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Directional Storm Tide
Dixie County, 2015

Scale 1:24,000

Map Plate 9
Page 9 of 94

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
Scan of DIXIE COUNTY evacuation map with notes:

1. Surge limits are based on sea level rise due to relative elevation above NAVD88 at high tide with no wave setup.

2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from LIDAR based digital elevation models.
Please consult with local authorities.

Management implementation are local responsibilities.

Hurricane evacuation decision-making and growth locations determined to be still water storm tide height setup.

Notes:
1. Surge limits are based on still water storm tide height with no wave height over LIDAR based digital elevation.
2. The points of reference are relevant to emergency management officials. The depths contained in the accompanying table were derived from relevant to emergency management officials. The depths contained in the accompanying table were derived from heights over LIDAR based digital elevation.

Datum = NAD 1983, 1,000-m USNG US National Grid

1. Surge limits are based on still water storm tide height with no wave height over LIDAR based digital elevation.
2. The points of reference are relevant to emergency management officials. The depths contained in the accompanying table were derived from relevant to emergency management officials. The depths contained in the accompanying table were derived from heights over LIDAR based digital elevation.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
Please consult with local authorities. Management implementation are local responsibilities. This map is for emergency planning purposes only. 29°27'0"N 81°28'0"W

Notes:
1. Surge limits are based on historical storm surge data and storm tide elevation above MLLW. City limits are also shown.
2. The Points of Reference are to be used in conjunction with the Storm Tide Table to determine the still water storm tide height.

City Limits
Storm Tide Category

Evacuation Routes

WNW-W (Paralleling)

Directional Storm Tide
Dixie County, 2015
Scale 1:24,000

Map Plate 21
Page 21 of 94

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on 200 year storm tide; refer to high elevation above NAVD88 at high tide with no wave action.
2. The Points of Reference are derived from LIDAR and are referenced to mean high water at high tide with no wave action. The depths contained in the accompanying table were derived from LIDAR based digital elevation.

Datum = NAD 1983, 1,000-m USNG
US National Grid
100,000-m Square ID

KN
Grid Zone Designation
17R

Scale: 1:24,000
Map Plate 23
Page 23 of 94

April 16, 2015

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Datum = NAD 1983, 1,000-m USNG
Perpetual Wildlife Area
DIXIE COUNTY

ATLAS LEGEND
- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Notes:
1. Surges limits are based on 100 year storm tide height
2. The Points of Reference are based on elevations and are not relevant to emergency management officials.

Scale 1:24,000
Grid Zone Designation

300

Evacuation Routes

Storm Tide
Category

Maximum of Maximums surge locations determined to be

This map is for emergency planning purposes only.

Please consult with local authorities.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
ATLAS LEGEND
- Evacuation Routes
- NHD Lakes
- Point of Reference

Storm Tide Category
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Datum = NAD 1983, 1,000-m USNG

Notes:
1. Surge limits are based on still water storm tide height above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from maximum of maximums surge heights over LIDAR based digital elevations.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
DIXIE COUNTY

Jena Wildlife Management Area

361 83°21'0"W

29°32'0"N

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water uncompensated storm tide height above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital elevation.
DIXIE COUNTY
Jena Wildlife Management Area

ATLAS LEGEND
Evacuation Routes
City Limits
NHD Lakes
Point of Reference

Storm Tide Category
Level 1
Level 2
Level 3
Level 4
Level 5

DATUM = NAD 1983, 1,000-m U.S.G.S.
Scale 1:24,000

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm tide heights above NAVD88 at high tide with no wave action.
2. The Points of Reference are considered to be relevant to emergency management officials. The depths contained in the accompanying tables were derived from still water storm tide height above NAVD88 based digital elevation.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surfage limits are based on minimum storm tide height elevation above NAVD88 at high tide with no wave impact.
2. The Points of Reference are used to determine levels at home and are related to emergency management officials. The heights contained in the accompanying table were derived from vertical control data and are heights over NAVD88.

ATLASS LEGEND
- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Storm Tide Category
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Directional Storm Tide
Dixie County, 2015

Scale 1:24,000

Map Plate 32
Page 32 of 94

 Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
Please consult with local authorities.

Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
ATLAS LEGEND

- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Storm Tide Category
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Notes:
1. Surge limits are based on the mean water line height above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from LIDAR-based digital elevation data.
3. The map scale is 1:24,000.

Directional Storm Tide
Dixie County, 2015

Map Plate 40
Page 40 of 94

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

Jena Wildlife Management Area

Directional Storm Tide
Dixie County, 2015

Scale 1:24,000

Map Plate 42
Page 42 of 94
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm tide height elevation above NAVD 88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital elevation.

Datum = NAVD 88, 1,000-m USNG
Scale = 1:24,000
Printed Pages in Yellow
Map Plate 43 of 95
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on the storm surge maximum elevation above NAVD 88 at key gate with its storm surge.
2. The Points of Reference are not intended to be related to emergency management duties. The depths contained in the accompanying tables are derived from relative elevations from LIDAR based digital elevation.

Datum = NAD 1983, 1,000-m USNG
US National Grid
Grid Zone Designation
17R

124,000
0
0

Scale: 1:24,000
Map Plate 47
Page 47 of 94

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
Please consult with local authorities.

Datum = NAD 1983, 1,000-m USNG

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

Directional Storm Tide Dixie County, 2015

Map Plate 51
Page 51 of 94

Notes:
1. Surge limits are based on the average water level above NAVD88 at high tide with no wave action.
2. The Points of Reference are those that are referenced in emergency management documents. The digits contained in the accompanying table were derived from the same elevation above NAVD88 using GNSS based digital elevation models.
ATLAS LEGEND

Evacuation Routes
City Limits
NHD Lakes
Point of Reference

Storm Tide Category
Level 1
Level 2
Level 3
Level 4
Level 5

Directional Storm Tide
Dixie County, 2015

Notes:
1. Surge limits are based on still water storm tide height above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital elevation.

Datum = NAD 1983, 1,000-m UNGS
US National Grid
100,000-m Square ID
17R
Grid Zone Designation

This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Note:
1. Surge limits are based on the maximum sea level rise over NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital contours.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on NAVD 88 NAVD88 National Geodetic Vertical Datum and NOAA NOAA National Oceanic and Atmospheric Administration data.
2. Point of Reference are defined by the intersection of the US National Grid US National Grid 100,000 m. Square ID and the Florida Division of Emergency Management's storm surge table were derived from data contained in the accompanying table were derived from data contained in the accompanying report.

ATLAS LEGEND
- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Storm Tide Category
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Directional Storm Tide
Dixie County, 2015

Scale 1:24,000

Map Plate 60
Page 60 of 94

Printed Pages in Yellow

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

Please consult with local authorities.

ATLAS LEGEND

- Evacuation Routes
- City Limits
- NHD Lakes
- Point of Reference

Storm Tide Category

- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

Notes:

1. Surge limits are based on return storm surge height over LIDAR based digital elevation at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from the National Ocean Service charted heights over LIDAR based digital elevation.

Datum = NAD 1983, 1,000-m USNG

Cross City

Dixie County, 2015

Map Plate 61
Page 61 of 94
Please consult with local authorities. The depths referenced are local responsibilities. This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Datum = NAD 1983, 1,000-m USNG

Notes:
1. Surge limits are based on the mean storm tide elevation above NAVD88 at high tide with no wave setup.
2. The Points of Reference are incorporated herein to aid in emergency management decisions. The depths contained in the accompanying tables were derived from LIDAR based digital elevation.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Datum = NAD 1983, 1,000-m USNG

Notes:
1. Surge limits are based on the water mark of the high tide elevation above NAVD88 at high tide with no wave energy.
2. The Points of Reference are the highest points of land-related to emergency management officials. The elevations contained in the accompanying table were derived from local official records and heights over LIDAR based digital elevation modeling.

Map Plate 88
Page 79 of 94
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm surge height above NAVD 88 at high tide with no wave setup.
2. The Points of Reference are fixed features and are not related to emergency management officials. The depths contained in the accompanying table were derived from fixed features and still water storm tide height above NAVD 88.

Map Plate 91
Page 82 of 94

Dixie County, 2015
Scale 1:24,000

Produced by the North-Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Notes:
1. Surge limits are based on still water storm tide height elevation above NAVD88 at high tide with no wave setup.
2. The Points of Reference are locations determined to be relevant to emergency management officials. The depths contained in the accompanying table were derived from Maximum of Maximums surge heights over LIDAR based digital elevation.

Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015
This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.
Produced by the North Central Florida Regional Planning Council for the Florida Division of Emergency Management, 2015

This map is for emergency planning purposes only. Hurricane evacuation decision-making and growth management implementation are local responsibilities. Please consult with local authorities.

Datum = NAD 1983, 1,000-m USNG

Notes:
1. Surge limits are based on breakwater design wave height and are not the same as non-structural flood protection.
2. Points of Reference are locations determined to be relevant to emergency management officials. They are not intended for navigation purposes.
3. The depths contained in the accompanying tables were derived from the National Ocean Service, NOAA, and U.S. Geological Survey National Elevation Dataset and panhandle LIDAR Data.

Scale: 1:24,000

Map Plate 113
Page 92 of 94
This page is intentionally left blank.
North Central Florida Regional Planning Council

Florida Statewide Regional Evacuation Study Program Team

Scott R. Koons, AICP, Executive Director

* Dwayne Mundy, Public Safety and Regulatory Compliance Program Director

** Michael DePalma, Associate Planner

** Kevin Parrish, Information Technology and Property Management Director

** Jean Strong, Executive Assistant to the Executive Director

** Tameshia Rochelle, Receptionist

* Primary Responsibility
** Secondary Responsibility
Funding was provided by the Florida Legislature with funding from the Federal Emergency Management Agency (FEMA) through the Florida Division of Emergency Management. Local match was provided by the North Central Florida Regional Planning Council and Dixie, Gilchrist, Lafayette and Taylor Counties.

Florida Division of Emergency Management
Bryan Koon, Director
2555 Shumard Oak Boulevard, Tallahassee, Florida 32399
Web site: www.floridadisaster.org